
 9/15/2016 

ootii | www.ootii.com 1 

Quick Start 
1. Import the Actor Controller package into your project. 

2. Select your character and add an Actor Controller. 

 

3. Add an Actor Driver to your character. 

 

4. Add an Input Source to the scene and assign it to your Actor Driver. 

 

5. Parent the camera to your character (optional). 

 



 9/15/2016 

ootii | www.ootii.com 2 

Foreword 
Thank you for purchasing the Actor Controller!  

I’m an independent developer and your feedback and support really means a lot to me. Please don’t ever 

hesitate to contact me if you have a question, suggestion, or concern. 

I’m also on the forums throughout the day: 
http://forum.unity3d.com/threads/actor-controller-an-advanced-character-controller.360976 

 

Tim 
tim@ootii.com 

 

Overview 
The Actor Controller is a replacement for Unity’s standard character controller and provides advanced features.  

While you can use it alone in any Unity 5 solution, it is also the foundation for the Motion Controller. 

Features 
The Actor Controller supports the following features: 

¶ Walk on walls, ceilings, etc. 

¶ Move and rotate on platforms 

¶ Move super-fast 

¶ Slide on steep slopes 

¶ Orient character to ground slope 

¶ Create custom body shapes 

¶ React to external forces  

¶ Supports Nav Mesh Agents 

¶ Supports root-motion 

¶ Supports any input solution 

¶ Zero Garbage Collection * 

¶ Includes code (C#) 

 

* Zero garbage collection when running in release mode. While in debug, some unity physics calls create minor 

amounts of garbage. 

  

http://forum.unity3d.com/threads/actor-controller-an-advanced-character-controller.360976
mailto:tim@ootii.com
https://www.assetstore.unity3d.com/en/#!/content/15672


 9/15/2016 

ootii | www.ootii.com 3 

The Basics 
In order to keep the Actor Controller as flexible as possible, I’ve created a clear distinction between the Actor 

Controller, the Actor Driver, and the Input Source. This allows you to use different components with the Actor 

Controller: including assets from other developers. 

 

Actor Controller 
Controls full-body character movement and rotation in response to the environment and external forces. 

Actor Driver 
Determines how the Actor Controller moves based on user input, AI, etc. The Actor Drivers I’ve included are 

usable, but can also be expanded on. In fact, you can create your own driver as needed. 

Note: If you own the Motion Controller, the Motion Controller IS the driver. 

Input Source 
Used to gather user input from the keyboard, mouse, gamepads, etc. By splitting this out, you could use the 

basic Unity Input Source provided or create an input source that uses a 3rd party input solution. 

 

With this approach, you can use any input solution you want. You can also change how your actor moves (ie 

walking vs. flying) by changing how the Actor Driver directs the Actor Controller. 

This also means that different characters in the same scene could be controlled in different ways or even by 

different players. 

 

  

Actor Driver 
Actor 

Controller 

Each update, the Actor Driver gathers 

input from an Input Source or other 

creates its own and tells the actor what to 

do. 

The Actor Controller moves and rotates 

while respecting the environment. 

A.I. 

Network 

Input 
Source 



 9/15/2016 

ootii | www.ootii.com 4 

Custom Input Sources 
Remember, the input source that I’ve included is optional. You can use any input solution you want by creating 

an input source. 

An input source is just a class that implements the IInputSource interface. By implementing the interface, your 

class promises to implements specific functions like “IsPressed” and “MovementX”. It’s these functions and 

properties that the Motion Controller and motions will use to tap into your input solution. 

This video will walk you through input sources in more detail: 
https://www.youtube.com/watch?v=2v0ZMyvgP4Y 

 

Unity Input Source ς Assets/ootii/Framework_v1/Code/Input 
This is a default input source that just uses Unity’s native Input Manager solution to read input. It supports basic 

movement and viewing with the keyboard, mouse, and Xbox controller. 

To enable the Xbox controller, just check the box. 

The appropriate values will be added to Unity’s 

Input Manager list (if needed).  

The ‘Viewing Activator’ property allows you to 

determine how rotation/viewing is activated. For 

example, when set to ‘Right Mouse Button’, actors 

will only rotate when the right mouse button is held 

down. 

In the end, it’s the driver’s responsibility for honoring the input source as needed. 

 

Quick Coding 
For example, the UnityInputSource.cs file is an input source that comes with the MC and that is used to tap into 

Unity’s native input solution. You’ll find it here in the following folder: 

Assets\ootii\Framework_v1\Code\ Input 

Inside that class, you’ll find functions like this: 

        public  virtual  bool  IsJustPressed( KeyCode rKey)  
        {  
            if  (!_IsEnabled) { return  false ; }  
            return  UnityEngine. Input .GetKeyDown(rKey);   // < -------------  
        }  

To create your own input source, you can copy UnityInputSource.cs, rename it to something like 

YourAwesomeInputSource.cs, and change the class name. Now, you can just change the function contents as 

needed for your input source. 

https://www.youtube.com/watch?v=2v0ZMyvgP4Y


 9/15/2016 

ootii | www.ootii.com 5 

In the previous code, we’re just tapping into Unity’s “UnityEngine.Input.GetKeyDown” function. In your input 

source, you’ll code the function contents using your input solution. Maybe it would look like this: 

        public  virtual  bool  IsJustPre ssed( KeyCode rKey)  
        {  
            if  (!_IsEnabled) { return  false ; }  
            return  YourAwesomeInputSolution.IsKeyPressedThisFrame(rKey);    // < -------------  
        }  

 

As you can imagine, there are a lot of different input solutions on the Asset Store. So, I can’t buy and implement 

them all. Hopefully, the video and this section will help you create the input source you need. If you’re willing to 

share, I’m happy to put it on the Vault. 

 

IInputSource Interface 
For developers creating their own Input Sources, remember to implement the IInputSource interface. Once you 

do this, you can fill in the properties and functions based on the input solution you’re using.  

http://www.ootii.com/UnityMotionVault.cshtml


 9/15/2016 

ootii | www.ootii.com 6 

Custom Actor Drivers 
Remember, the drivers that I’ve included are optional. These drivers handle basic movement cases and work for 

a variety of situations. However, you can also create your own driver to control the actor however you want.  

In the end, the drivers are really calling functions in the Actor Controller: 

ActorController.Move()  

ActorController.RelativeMove()  

ActorController.Rotate()  

 

There are several other functions you can use when creating your own driver, but the ones above are the basics. 

 

Another useful function for applying forces is: 

ActorController.AddImpulse()  

This can add a force for things like a jump. However, you should NOT use AddImpulse() to move the character 

normally as the AC is not a physics-based controller, but an input-based controller. 

 

Included in the package are several Actor Drivers that you can use: 

Actor Driver ς Assets/ootii/ActorController/Code/Actors/CharacterControllers 
This is the default driver. It takes input from the keyboard, mouse, and Xbox controller and turns that into 

movement and rotation that is relative to the character’s forward direction. It then calls the Actor Controller 

functions to actually move the actor. 

 

Animator Driver ς Assets/ootii/ActorController/Code/Actors/CharacterControllers/Drivers 
Inherits from Actor Driver, but looks for a Unity Animator that is attached to the game object. If found, it will 

query for root-motion data and use that to move and rotate the character. If no root-motion data is found, input 

will be used to control the character. 



 9/15/2016 

ootii | www.ootii.com 7 

Nav Mesh Driver ς Assets/ootii/ActorController/Code/Actors/CharacterControllers/Drivers 
Inherits from Animator Driver, but uses a Nav Mesh Agent to move the actor to a specific target. If an Animator 

is found, it will query for root-motion data and use that to move and rotate the character. If no root-motion data 

is found, speed will be set on the component. 

Sphere Actor Driver ς Assets/ootii/ActorController/Demos/Code 
Inherits from Actor Driver. When an “inner” sphere is found it will use this the actor’s body and rotate it based 

on the direction the character is moving. This give the impression that the sphere is rolling.  

Spider Actor Driver ς Assets/ootii/ActorController/Demos/Code 
Inherits from Animator Driver. Similar to the other drivers, but when jump is pressed (and the actor is facing a 

wall), it will jump onto the wall so it can climb. 

 

Coding an Actor Driver 
Coding an Actor Driver is really just a matter of reading the input and then telling the Actor Controller what to 

do.  

To code the AC, you need to understand that rotations are broken up into two pieces; yaw and tilt. 

 

Typically, you’d use the following function of the Actor Controller: 

Move(Vector3)   Moves the actor based on world space. 
RelativeMove(Vector3)   Moves the actor based on local space. 
SetPosition(Vector3)   Forces the absolution position value. 
 
Rotate(Quaternion)   Rotates the actor around its “up” axis. This rotation is typically called ‘yaw’. 
Rotate(Quaternion, Quaternion)   Rotates yaw and tilt. 
SetRotation(Quaternion)   Forces the absolute rotation value. 

 

  

Tilt by rotating around 

the forward and right 

axis.  

The base is rooted, but 

this actor’s top moves 

around. 

Yaw by rotating 

around the up axis. 

Both the base and top 

stay in the same 

position, but the actor 

spins relative to its 

current up axis. 
actor actor 



 9/15/2016 

ootii | www.ootii.com 8 

Simple Driver Code 
 

using  UnityEngine;  
using  com.ootii.Actors;  
using  com.ootii.Helpers;  
using  com.ootii.Input;  
 
public  class  SimpleDriver  : MonoBehaviour  
{  
    public  GameObject _InputSourceOwner = null ;  
    public  float  MovementSpeed = 5f;  
    public  float  RotationSpeed = 120f;  
 
    protected  IInputSource  mInputSource = null ;  
    protected  ActorController  mActorController = null ;  
 
    void  Start()  
    {  
        mActorController = gameObject.GetComponent< ActorController >();  
        mInput Source = InterfaceHelper .GetComponent<IInputSource >(_InputSourceOwner);  
    }  
 
    void  Update()  
    {  
        // Rotate based on the mouse  
        if  (mInputSource.IsViewingActivated)  
        {  
            Quaternion  lRotation = Quaternion .Euler(0f, mInpu tSource.ViewX, 0f);  
            mActorController.Rotate(lRotation);  
        }  
 
        // Move based on WASD  
        Vector3  lMovement = new Vector3 (mInputSource.MovementX, 0f, mInputSource.MovementY);  
        mActorController.RelativeMove(lMovement * Move mentSpeed * Time.deltaTime);  
    }  

}  

 

If you wanted your character to tilt, you could change the rotation code inside the Update() function to look 

something like this: 

            Quaternion  lRotation = Quaternion .Euler(0f, mInputSource.ViewX, 0f);  
 
            float  lTiltAngle = (mInputSource.IsPressed( KeyCode.E) ? 1f : 0f);  
            lTiltAngle = lTiltAngle + (mInputSource.IsPressed( KeyCode.Q) ? - 1f : 0f);  
            Quaternion  lTilt = Quaternion .Euler(0f, 0f, lTiltAngle * 5f);  
 
            mActorCont roller.Rotate(lRotation, lTilt);  

 

Notice that the last line uses the second version of the Rotate() function. This one includes the ability to tilt.  

  



 9/15/2016 

ootii | www.ootii.com 9 

Body Shapes and Colliders 
Body shapes are used for collision detection by the Actor Controller. By using spheres and capsules, we can 

represent the shape of a human as well as other non-simple characters. We also have the ability to change these 

shapes during run-time in order to match the character’s pose. 

The default setup has two shapes: 

Body Capsule – This capsule is similar to a 

traditional character controller, but is raised off 

the ground. This allows the actor to get right up 

to the edge of a step… which is great for foot IK. 

Foot Sphere – This sphere is only active while in 

the air. This keeps our feet from entering things 

as we jump over objects. However, it doesn’t 

block us when we move close to a ledge or step. 

 

 

 

 

It’s important to note that body shapes are NOT colliders. So, external raycasts or rigid-bodies won’t react to 

them. If you want an external raycasts to hit your character, you can add traditional Unity colliders to your actor 

as you normally would or check the ‘Use Unity Colliders’ checkbox. 

The reason I use body shapes instead of colliders is that the normal Unity capsule collider isn’t very flexible. You 

can’t rotate it arbitrarily or tie it to different transforms. That means its shape won’t automatically change as 

your character animates. For example: 

Notice how the Unity capsule collider can’t resize automatically 

to match the head transform. It’s also stuck in the cardinal 

directions. 

However, the body shape capsule will resize and rotate with the 

transforms it’s tied to. So, your character’s shape will change 

automatically. 

 

 

 

 



 9/15/2016 

ootii | www.ootii.com 10 

Unity Colliders 
To help compensate for the Unity capsule collider restrictions, there is an option on each body shape that will 

create and manage Unity colliders using the body shapes. 

Simply check the “Use Unity Colliders” checkbox and 

colliders will be created at run-time to match the body 

shapes. 

Spheres are easy. However, since we can’t really use 

Unity capsule colliders, spheres are used instead. 

 

 

 

 

 

It’s a little cluttered, but notice how we use multiple sphere to 

approximate the body shape capsule’s position, size, and rotation.  

As the character’s head moves, the spheres will move to keep the 

capsule’s shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9/15/2016 

ootii | www.ootii.com 11 

Rigidbody 
Adding a Rigidbody component to your character is fine. However, the rigidbody will attempt to control your 

character. So, that means the rigidbody and AC are competing. To fix this, disable gravity on the rigidbody and 

check the “Is Kinematic” check box. This will stop the rigidbody from trying to control your character. 

 

 

  



 9/15/2016 

ootii | www.ootii.com 12 

Collisions vs. Grounding 
“Colliding” and “Ground” are two different things.  

Colliding means collision detection has determined you’ve bumped into another object… say a wall. 

Grounding means we’ve tested the ground directly under the actor and they can stand on it. 

So, you can completely disable collisions and your character will still be able to walk on the ground, move up 

slopes, etc. There is a huge performance boost when you disable collisions. This is great for NPCs that may be on 

rails or have limited movement. 

 

Colliders 
Actor Controller is able to collide against standard unity colliders. The fastest colliders are sphere, box, and 

plane. However, it can also detect collisions against mesh colliders. However, like Unity’s Character Controller, 

there’s a performance impact when colliding against mesh colliders. 

With Unity 5.3, the AC is now using Unity’s non-allocating physics calls. This is great for mobile as collisions no 

longer create garbage that can cause performance blips. However, these calls cause collisions with back-faces of 

planes (and probably other shapes).  

Collision Layers 
The Actor Controller uses standard Unity’s layers to determine what to collide with.  

Simply set the layers in the collision section 

to collide with objects and props that are on 

the same layer. If an object is on a layer that 

isn’t included in the Collision Layers, the 

character will simply go through the object. 

To enable layers with grounding, you must 

also check the “Use Grounding Layers” 

checkbox. 

 

collision collision 

grounding 



 9/15/2016 

ootii | www.ootii.com 13 

Mesh Colliders 
To help minimize the impact, we parse the mesh collider and store its information for future collisions. For small 

meshes, this can be done on first impact. However, for large meshes you’ll want the Actor Controller to pre-

process the mesh collider. 

To do this, add an ootii Mesh Partitioner component to the game object that has a Mesh Collider object. Then, 

check ‘Parse on Start’. 

All the remaining options are for visualizing the partitions in 

the editor and should not be enable. 

 

 

 

 

 

 

  



 9/15/2016 

ootii | www.ootii.com 14 

Actor Controller Advanced Settings 

Grounding 

 

Is Gravity Enable 
Determines if we use gravity or not. 

Is Relative 
Determines if gravity is based on the world orientation (Vector3.up) or the ground surface’s normal. 

In order to walk-on-walls, this option must be set. 

Extrapolate Physics 
The Actor Controller uses the LateUpdate() function for all its processing. However, physics based information 

(like gravity and forces for jumps) are processed in FixedUpdate() in order to be consistent across frame-rates. 

These two functions aren’t always in synch.  

If you notice stuttering while falling, checking this options will smooth that out. 

Gravity 
Determines the force and direction of gravity. If no value is set, we use Unity’s gravity value. 

The final gravity direction will be determined by the Is Relative flag. 

Skin Width 
Small amount of room allowed between the body shapes of the actor and objects they collide with or ground to. 

Mass 
Mass of the actor. We use this value when applying external forces. We use Unity’s standard which is roughly 1 

unit = 1 cube = ~35 kg. 

Grounding Start 
When shooting the ray for grounding, this is the height above the character’s root that we’ll start shooting the 

ray downward.  

Grounding Distance 
Determines how far below the character we’ll shoot the grounding ray. 

Grounding Radius 
In addition to a ray, a sphere is cast downward in order to help prevent falling into gaps. This value should be 

the radius of the “feet” or bottom of the actor. 

Force Grounding 



 9/15/2016 

ootii | www.ootii.com 15 

Determines if we’ll push the character down to the ground if they are within the Force Distance range. 

Force Distance 
Maximum distance the character can be from the ground and we can still force them too it when Force 

Grounding is checked. 

Collisions 

 

Is Collision Enabled 
Determines if we’ll test for collisions 

Stop Rotations 
Determines if collisions will stop the character from rotating 

Allow Pushbacks 
Determines external colliders will cause the actor to move. 

Assume the actor is just standing idle, but a collider is moving to the character. This object will allow the collider 

to push the character back in order to keep the character from penetrating it. 

However, like the Unity Character Controller, the collider could push the character into another collider. So, care 

should be taken with this. 

There is also a performance penalty for using this option. Use it sparingly. 

Overlap Center 
When performing collision detection, we first see if there are 

objects within the range of the character. This is the center of 

that range. 

Overlap Radius 
When performing collision detection, we first see if there are 

objects within the range of the character. This is the radius we 

use. 

In the editor, you’ll see a light gray sphere representing the 

overlap circle that will be used for collision tests. Use the 

“Overlap” settings to ensure the majority of your character is 

covered. 

 

 

 



 9/15/2016 

ootii | www.ootii.com 16 

Sliding 

 

Is Sliding Enabled 
Determines if the actor will slide when on a ramp whose angle is greater than the Min Slope angle. 

Min Slope 
Minimum angle the slope (under the actor) needs to be before the actor starts to slide. 

Gravity 
When sliding, the percentage of gravity that will be applied to the slide. This helps to fake friction on the surface. 

Max Slope 
The maximum slope an actor can move up. If a slope is greater than this, the character will simply stop moving. 

Step 
Small distance used internally to find the closes point to where the slope actually starts. This value typically 

doesn’t need to be changed 

Orientation 

 

These features are important when a character is mean to walk on walls or ceilings. In order to do this, the 

character must orient to the surface they are walking on. 

Orient to Ground 
Determines if the actor will change its “up” vector to match the normal of the surface he is standing on.  

In order to walk-on-walls, this option must be set. 

Keep Orientation 
Determines if the actor will keep the last orientation it had while jumping. When not checked, the character will 

return to the natural orientation (Vector3.up) while jumping. 

Min Angle 
Minimum angle change that will cause an orientation change. 

Max Distance 
The maximum from the ground before the actor’s orientation will start to change to the natural ground 

(Vector3.up). 

Time 
The number of seconds it takes to reach the new orientation. 

 



 9/15/2016 

ootii | www.ootii.com 17 

Freezing 

 

Setting these options allow you to limit the movement and rotation of the specified axis. 

  



 9/15/2016 

ootii | www.ootii.com 18 

FAQ: Tiny Steep Slopes 
In designing the AC, I wanted to be able to limit the slopes characters could go up. This way we could have some 

characters (like monsters) that could go up steeper slopes than say a human.  

However, slopes provide an interesting challenge as you can’t predict a slope. Instead, you can only react to 

slopes. Here’s what I mean... 

Here we have an actor that is moving 

directly into a slope. Let’s say the slope is 

too steep and we shouldn’t be able to go 

up it. 

In this case, we can shoot a ray ahead of 

the actor in the direction of movement. 

When that ray collides with the slope, we 

can determine the angle and stop. 

That’s predictive and it works. 

 

But wait... I said you can’t predict the slope!  

What happens if the character isn’t moving directly into the slope? What if he’s moving up the slope, but taking 

a long path. 

In this case, we can shoot a ray pretty 

far forward and never hit the slope. That 

means we never get an angle to test and 

we think we’re good to move. 

When this happens, we can start doing 

all sorts of tricks to see if there really is a 

slope. Unfortunately, each trick adds a 

tiny performance hit and each trick 

leaves a hole to be filled by another 

trick. 

 

So, I’ve found that the best approach is to test for the slope that is directly under the character. I call this 

“reactive”. 

 

 

 

 



 9/15/2016 

ootii | www.ootii.com 19 

 

By testing the character’s origin, we 

truly know if we’re on a slope regardless 

if we’re moving directly against it or 

sideways. 

The downside is that even the tiniest of 

slope is tested. 

 

 

 

 

In looking at this picture, we probably 

should be able to just step right over the 

slope. After all, the slope is pretty tiny. 

However, we can’t accurately predict if 

the area above the “step height” is open 

if we have the situation I’ve just talked 

about. 

So, that tiny slope will stop movement. 

 

 

Does that mean your terrain can never have tiny bumps? Not really. It just means you need to manage it.  

  



 9/15/2016 

ootii | www.ootii.com 20 

Remember that when creating a game, you’re not duplicating reality. There simply isn’t enough computing 

power to handle every situation that the real world has to offer. So, even AAA games compromise. The act of 

creating the game is the act of creating the illusion of reality. 

 

 

So, what are our options? 

 

Max Slope 
Set the Max Slope to something larger that allows you to go up the bump... 85 degrees would be an extreme. 

Obviously this means your character walks up any slope of that degree or smaller. Depending on your game, 

that may be a good option. 

 

If you set the Max Slope to 0, internally I default it to 70 degrees. 

Foot is embedded  
in the rock. 

Lara is hovering above step  

Rise of the Tomb Raider (PC 2016) 

The goal of this isn’t to point out Tomb Raider’s 

flaws... it’s one of my favorite games. 

But, it’s to show you that even AAA game makers use 

tricks to balance the playability, the look, and the 

performance. 

As game developers and level designers we do too. 

Feet slanted as if 
on slope 



 9/15/2016 

ootii | www.ootii.com 21 

 

Remove Colliders 
Remove the collider from the tiny slope. If you have a tiny slope, does it really matter that the character bumps 

over it? In the case of a human with two legs, you typically wouldn’t even notice it. This is especially valid when 

you’re dealing with terrain.  

I had someone show me a scene where 1,000’s of rocks and pebbles were all over the ground. Every rock and 

pebble was part of the collider in their hill. The collider was a complex and massive mesh. 

So, while the overall slope of the hill was fine, each little pebble caused too steep of a slope and the AC would 

stutter trying to move up the hill. 

This goes to my comment about the “illusion of reality”. Having every pebble be part of the collider may be closer 

to reality, but the performance hit it puts on your game typically isn’t worth it.  

Slopes to Steps 
Change the collider from a “slope” to a “step”.  The AC handles steps and slopes differently. In the case of a step, 

we’ll smoothly pop up. So, your slope can look like a slope, but the collider would actually be a cube with a 90-

degree face. 

 

Slopes to Slopes 
Maybe you can get away with changing the collider of your steep slope to something not so steep. 

 

 

Summary 
Remember, we’re not talking about every slope. We’re talking about small steep slopes that exceed the Max 

Slope property that we’ve set on the Actor Controller. We’re talking about breaking the rule that we set. 

Game development is all about compromise. 

  

Visible Shape 

Collider 

Visible Shape 

Collider 



 9/15/2016 

ootii | www.ootii.com 22 

FAQ: Slowly Rising Up Stairs and Slopes 
Most character controllers have you “pop” up steps. It works, but it can also be a bit jarring as your character is 

low one frame and higher the next. This is especially true if you have several steps; you get this pop-pop-pop 

experience. 

The typical solution is to use ramps as the colliders for the steps. This provides a nice smooth way to go up 

stairs, but your foot IK won’t recognize the individual steps. Instead, if you stop on the stairs your foot IK thinks 

you’re on a slope and your feet tilt.  

Smooth Stepping 
So, with the AC, I include a feature called “smooth stepping”. It basically rises you up to the step over time 

instead of popping you up. 

The “Step Up Speed” determines how quickly (units per 

second) you’ll move to the higher step.  

“Step Down Speed” determines how quickly you’ll move 

to the lower step. 

“Max Angle” is used for slopes. If the ground angle is steeper than this value, we disable smooth stepping. 

 

The Catch 
The catch is that sometimes when dealing with a longer set of stairs or with ramps, the character will rise slower 

than you are moving forward. In this case, the character looks like he’s sunk and slowly rising up. 

To fix this, there’s a couple of options: 

Disable Smooth Stepping 
Disable smooth stepping by setting Step Up Speed and/or Step Down Speed to “0”. This will cause you to pop up 

and down the steps in a traditional way. 

Increase Speeds 
The reason this ‘catch’ typically occurs is that your character is moving forward faster than they are moving 

up/down. So, you can increase the speeds to match the game play. Stepping will be faster and should keep up 

with your forward movement. 

Lower the Max Angle  
With slopes, you can lower the max angle to disable the smooth stepping on things like terrain. I’ve actually 

found that “3” is a good number for terrain. 

 

  



 9/15/2016 

ootii | www.ootii.com 23 

FAQ: Sinking on Steep Slopes 
I’ve had a couple people ask why the character’s colliders sink into slopes.  

Most characters aren’t perfect capsules or spheres. However, we use capsules and spheres to define the 

collision areas because they are fast for collision detection, provide simplicity, and the curved bottoms can help 

when moving over bumpy ground. However, steep slopes can be an issue. 

This is pretty easy to visualize: 

 

In the first picture, we don’t allow sinking. Instead, we simply force the collider to stop on the slope. In this case, 

the character is no longer “grounded” and actually floating in the air. 

Not only will this make it look like your character is floating, but the AC will think the character is floating and 

movement could be stopped. So, grounding and collisions happen differently as I mention previously in the 

document. 

The other reason for sinking is foot IK. If we strictly adhered to the collider shape, the feet would never reach 

the ground and we couldn’t force the feet to a more natural stance with the environment. 

All that said, you do have some control over this. Use the “Enable on ramp” option to determine if the collider 

should respect ramps or not: 

 

 

Fair warning: Sometimes I still allow the collider to sink into the ramp... But, only when the code feels it is 

important. 

  

Floating Grounded 



 9/15/2016 

ootii | www.ootii.com 24 

FAQ: Forcing Orientation 
Remember, orientation is based on the ground surface, not gravity. Take a spider walking on the wall... World 

gravity doesn’t change, but its orientation did. 

That said, we use the “Is Relative” flag in the gravity section to ensure the spider sticks to the wall by changing 

its personal gravity. This doesn’t cause an orientation change, it just makes sure his gravity is pulling him 

towards the ground’s normal. If the spider is on the wall that means he is pushed towards the wall and now he’s 

“grounded” on the wall. 

From time to time, you may want to force your character to have a certain orientation. In fact, I do this in the AC 

demo (AC_Demo1) when the spider jumps to the wall. Check out the SpiderDriver.cs file that is responsible for 

spider movement. 

 

To do this, you want to use the AC’s SetTargetGroundNormal() function. This function allows you to force the 

ground normal that will cause the actor’s orientation to change if “Orient To Ground” is checked in the AC 

settings. 

In addition to setting SetTargetGroundNormal, you may want to change the speed it takes for the actor to orient 

to this direction. You can do that with OrientToGroundSpeed. 

Again, you can see all this happening in SpiderDriver.cs: 

¶ Line 167: Player pressed jump and wall found. Initiating re-orientation 

¶ Line 175: Change the OrientToGroundSpeed based on the player pressing jump 

¶ Line 179: Add impulse so the spider moves up as he changes orientation 

¶ Line 112: SetTargetGroundNormal called and actor starts to rotate 

¶ Line 105: Actor reaches new ground target and SetTargetGroundNormal is cleared 

One thing to think about: If your actor were to simply rotate around his origin right where he’s at, he’ll probably 

end up embedded in a wall or floor. So, you may need to add some impulse or movement to prevent that. I do 

that at line 179. 



 9/15/2016 

ootii | www.ootii.com 25 

FAQ: Adding Jumping 
Jumping can be implemented a couple of different ways. I prefer to use a force that applies lift to the character 

and then let gravity pull him down.  

 

There’s a several of advantages to this approach: 

1. The AC likes having the character’s root remain at his feet; that’s the true position of the character. So, having 

the root move with the jump allows him to jump on-top of objects easily. 

2. In game, you can change how high the character jumps just by changing the force of the jump. 

3. If you setup your body shape to use the head transform, the body shape will automatically resize to fit the 

character’s pose. See the settings here: 

Notice how the “Bottom Transform” is empty. That means we base it 

on the root. The “Top Transform” is based on the head bone. 

To apply the force, you’d simply make call to the AC’s AddImpulse 

function like this: 

ActorController  mActorController = 
gameObject.GetComponent< ActorController >();  
 
mActorController.AddImpulse(transform.up * _JumpForce);  

 

 

Root moved by physics force 



 9/15/2016 

ootii | www.ootii.com 26 

If you do go with this approach, typically you’d set it so that your jump animation doesn’t have your character 

rise up. Instead, his feet stay at the root. The raw animation looks a bit wonky by itself, but once you add the 

impulse, it looks great. 

 

Animation Controlled Jump 
If you don’t want to use the AddImpulse approach, you can have the animation include the up-movement of the 

jump. In this case, I’m assuming  it has no root-motion. The challenge with this approach is that the root of the 

character is still on the ground while his body is in the air. 

 

To compensate for this, you’d typically move and/or resize the collider to represent the character’s position over 

the life of the jump. 

To do that with the body shapes, you’d use code like this: 

        // Grab the first body shape as a capsule  
        BodyCapsule  lCapsule = mActorController.BodyShapes[0] as BodyCapsule;  
        if  (lCapsule != null )  
        {  
            // Chan ges the offset of the bottom part of the capsule  
            lCapsule.Offset = Vector3 .up * 0.25f;  
 
            // Changes the offset of the top part of the capsule  
            lCapsule.EndOffset = Vector3 .zero;  
        }  

Of course, you’ll have to change the settings as the jump occurs and then put them back once the jump 

completes. 

Root does not move with animation 



 9/15/2016 

ootii | www.ootii.com 27 

Another thing to think about is that since the root is still on the ground, jumping onto objects becomes a bit 

trickier. The reason is that the root would actually go into the box you’re jumping on. For example: 

 

In all these cases, it would be up to your driver to compensate for the jump, root position, and capsule shape. 

 

  

Box we are jumping on 

Root needs to be moved up 



 9/15/2016 

ootii | www.ootii.com 28 

Double-Jumps 
When implementing a double-jump, you’ll want to clear the AC’s “AccumulatedVelocity” property prior to 

calling AddImpulse() again. The reason is physics... 

When using AddImpluse() for a jump, we're dealing with gravity. Just like in real-life, you have a decreasing 

velocity as you go up (due to gravity countering the initial jump velocity), 0 velocity at the apex, and increasing 

velocity as you go down (due to gravity).  

 

I store that accumulation of velocity in the "AccumulatedVelocity" variable. So, as you fall and gravity increases 

your speed, that is captured here frame over frame. 

Since doing AddImpulse() again for a double jump adds velocity, you can get different results depending on your 

current accumulated velocity. If you’re on the falling side of the jump and a lot of gravitational velocity has 

accumulated, your double-jump may not be enough to cause you to move up again. 

By clearing AccumulatedVelocity, you're removing the increasing impact gravity had over time and the 

accumulation starts over. So, you’ll have a new fresh jump from your current position. 

To clear AccumulatedVelocity, just do code like this: 

lActorController.AccumulatedVelocity = Vector3 .zero;  

 

 

  

Gravity Jump 

Zero velocity at apex 

Increasing velocity as you fall  



 9/15/2016 

ootii | www.ootii.com 29 

FAQ 

How do I stop actor controllers from colliding with each other? 
If you remember early on, I talk about the difference between collisions vs. grounding. Even if we make it so two 

actor’s don’t collide with each other, we could get some odd results as they go through each other. That’s 

because one wants to be “grounded” on-top of the other. 

For example: Say I have two actors; one on Layer #8 and one on Layer #9.  

To prevent collisions, you want to enable “Use Grounding Layers” and ensure the “Ground Layers” doesn’t 

include your other character layers. You also want to ensure “Collision Layers” doesn’t include your other 

character layers as well. 

Since My “Grounding Layers” and “Collision 

Layers” for both actors doesn’t include those 

layers... they don’t collide. 

 
 

  



 9/15/2016 

ootii | www.ootii.com 30 

Support 
If you have any comments, questions, or issues, please don’t hesitate to email me at support@ootii.com. I’ll help 

any way I can. 

Thanks! 

Tim 

 

 

mailto:support@ootii.com

