
 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Demo Scene Quick Start
1. Import the Easy Input package into a new project.

2. Open the Sample scene.

Assets\ootii\EasyInput\Demos\Scenes\Sample

3. Select the ‘Input Source’ GameObject and press Reset Input Entries.

4. Check ‘Is Xbox Enabled’ if you want to use the Xbox controller (optional)

5. Press play.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Custom Scene Quick Start
1. Import the Easy Input package into your project.

2. Create a new GameObject and add an Easy Input Source.

3. Select the GameObject and press Reset Input Entries.

4. Check ‘Is Xbox Enabled’ if you want to use the Xbox controller (optional)

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Overview
Unity’s Input Manager is super flexible, but has some challenges when it comes to changing input mappings at

run-time and supporting Xbox controllers across platforms.

Easy Input makes it…well, easy.

Not only is it super simple to grab user input information, but it simplifies the process of setting up and

supporting the Xbox controller.

With Easy Input, you also have access to advanced information like how long a button has been pressed and

double-click support for all keys and buttons. You can even setup actions that can be triggered by any number of

inputs to simplify game logic.

When used with the Event System – Dispatcher, Easy Input supports pushing keyboard, mouse, and Xbox

controller events to listeners.

For more information on the Event System – Dispatcher, follow this link:
https://www.assetstore.unity3d.com/#/content/12715

Features
Easy Input supports the following features:

 Action alias support with multiple inputs

 Action alias support with ‘helper’ input (ie ‘T + Alt’)

 Ability to change input mappings at run-time

 Xbox controller support for Windows and Mac (no code changes required)

 Advanced info for all keys and buttons:

o Time pressed & elapsed ‘pressed’ time

o Time released & elapsed ‘released’ time

o Double-press

o Toggle

o Custom function calling

 Simple access to mouse states

 Simple access to keyboard states

 Simple access to Xbox controller states

 Complete code base to use as-is or modify

 Simplified setup process

Contents:
This package contains:

 The core classes used to manage the input.

 A zip file containing the Unity input settings, pre-configured for you.

 A sample scene to show how to setup ‘action aliases’ and access input information.

https://www.assetstore.unity3d.com/#/content/12715

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Performance
Most of the performance impact of the Easy Input InputManager is felt at the very end of the frame. This is

where the system tests for input activity and updates its state values.

This means that using a polling approach for input handling during GameObject updates are less impactful on

performance.

In performance tests on Windows 8, Easy Input processing took on average 0.03 milliseconds per frame.

Setup
To use Easy Input, follow these simple steps:

1. Create a new project or open an existing one
Follow the standard practice for creating or opening a scene. Nothing special here.

2. Add this package to your project
Import the package files from the Unity Asset Store.

3. Add the Easy Input Source to your scene
Typically, you’d add an empty GameObject to your scene,

name it something like ‘Input Source’, and add the Easy

Input Source as a component to that GameObject.

This works well in two ways:

1. It provides a way of saving the input settings with the

scene. So, for example, if you enable the Xbox controller…

it stays enabled for the project.

2. It provides a way of accessing the Easy Input

InputManager ‘locally’.

What I mean by that is InputManager is a static class and

can be accessed anywhere. However, sometimes it’s

better to specify a specific input source and access it as a

variable as opposed to a singleton. This would allow you

to have multiple input sources in a single scene that point

to different input devices.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

4. Add the core Input Manager Entries
With the Easy Input Source added, simply press the

‘Reset Input Entries’ button.

This will create the required Unity Input Manager

entries. If the entries currently exits, it will delete

them first and then re-create them.

* In previous versions of Easy Input, there was a zip file whose contents replaced the InputManager.asset file.

That is no longer needed.

5. Setup ‘Action Aliases’
Action aliases allow you to setup custom names that you can look for in code. This allows you to map multiple

inputs to a single action. So, instead of testing input for “space bar” or “button1”, you can test for the action

“Jump” instead. It provides for a much cleaner approach and also allows for input settings to be changed at run-

time.

With this version of Easy Input, you can register Action Aliases directly in

the UI. These will be the default aliases that will be setup once you start

your game. During runtime, you can modify these defaults as needed.

When accessing Action Aliases in code, you can simply do a call like this:

bool lIsPressed = InputManager.IsJustPressed("Jump"))

In the image to the left, you can see where you add and remove action

aliases. By clicking on an item in the list, you can modify its properties:

Name – Key used to test the action from code.

Description – Friendly description to remind you of what the alias is for.

Primary Input – Input key or button that the alias references.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Support Input – Additional key required for the Primary Input to be valid. For example, if the Primary Input is

“Q” and the Support Input is “Left Shift”, the action won’t register as active unless both “Q” and “Left Shift” are

pressed.

While coding, it’s much better to test input based on the action you want vs. the actual input.

For example,

Let’s say the player can jump by pressing the space-bar, right-clicking the mouse, or pressing ‘A’ on the

Xbox controller.

Instead of having complex conditions, you can setup an ‘Action Alias’ by doing this:

InputManager.AddAlias("Jump", EnumInput.SPACE);
InputManager.AddAlias("Jump", EnumInput.GAMEPAD_0_BUTTON);
InputManager.AddAlias("Jump", EnumInput.MOUSE_RIGHT_BUTTON);

Now, to test if it’s time to jump, you can just do this:

if (InputManager.IsJustPressed("Jump"))
{
 // Do jump
}

Setup as many aliases as you need to. See ‘Action Aliases’ for more detail.

5. Setup Unity Input Manager entries (optional)
With this version of Easy Input, you can access Unity’s Input Manager entries with ootii’s Input Manager or

register ‘Action Aliases’ directly through Easy Input.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

When accessing Unity’s Input Manager entries, you can simply do a call like

this:

bool lIsPressed = InputManager.IsJustPressed("Fire1"))

You don’t need to do any other setup. However, it should be noted that you

can’t take advantage of Easy Input’s advanced information and features that

track things like how long the button has been pressed, is it double-clicked,

etc.

So, I prefer to set the Action Aliases through Easy Input…

6. Customize Action Alias Defaults (optional)
Several aliases already exist to support generic actions like ‘Movement’ and ‘View’. You can customize these,

remove them, or add to them if needed.

See ‘Action Aliases’ for more detail.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Usage
With everything setup, you’re ready to use the Easy Input. All you have to do is call one of the access functions

on the InputManager.

For example:

To test if the ‘A’ key on the keyboard has just been pressed you’d write this:

 if (InputManager.IsJustPressed(EnumInput.A))
 {
 }

To get how long the ‘B’ button on the Xbox controller has been pressed, you’d write this:

float lElapsedTime = InputManager.PressedElapsedTime(EnumInput.GAMEPAD_1_BUTTON);

To get the screen based ‘x’ position of the mouse, you’d write this:

float lX = InputManager.MouseX;

There’s a bunch more you can do. Check the ‘Code Reference’ below for all the capabilities.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Action Aliases
Action aliases allow you to setup custom names that you can look for in code. This allows you to map multiple

inputs to a single action. It provides for a much cleaner approach and also allows for input settings to be

changed at run-time.

For example,

Let’s say the player can attack by pressing the left mouse button or pressing ‘X’ on the Xbox controller.

You can setup an ‘Action Alias’ by doing this:

InputManager.AddAlias("Attack", EnumInput.MOUSE_LEFT_BUTTON);
InputManager.AddAlias("Attack", EnumInput.GAMEPAD_2_BUTTON);

Aliases can be used like any other input control. That means they can be tested for ‘IsPressed’, ‘IsJustPressed’,

etc. They can also have timing data retrieved to determine how long they’ve been pressed.

InputManager.IsJustPressed("Attack");

To manage the aliases, use the following functions:

InputManager.AddAlias(string AliasName, int InputID)
Adds a new alias including the name and corresponding input.

InputManager.AddAlias(string AliasName, int InputID, int HelperInputID)
Adds a new alias including the name and corresponding input. Also expects a ‘helper’ input. This would be an

additional key or button that must be active. In the case of ‘Alt + T’, ‘Alt’ is the helper input.

InputManager.RemoveAlias(string AliasName)
Removes all inputs associated with the alias name.

InputManager.RemoveAlias(string AliasName, int InputID)
Removes the specific entry that has the matching alias name and input id. All other input IDs associated with the

alias remain.

Default Action Aliases
Several default aliases exist to support the Movement and View properties of the Easy Input’s InputManager.

Movement
MovementX and MovementY are properties on the InputManager that allow for a simple way to test for

movement. By default, movement is setup to use the Xbox controller’s left stick and/or the WASD keys on the

keyboard.

Calling InputManager.MovementX return a value from -1 to 1. These values correspond to a ‘full move left’ and

‘full move right’.

Internally, it uses the following Action Aliases:

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

_MoveHorizontal, which uses the left stick of the gamepad
_MoveLeftKey, which uses the ‘A’ key of the keyboard
_MoveRightKey, which uses the ‘D’ key of the keyboard

Calling InputManager.MovementY return a value from -1 to 1. These values correspond to a ‘full move

backwards’ and ‘full move forwards’.

Internally, it uses the following Action Aliases:
_MoveVertical, which uses the left stick of the gamepad
_MoveUpKey, which uses the ‘W’ key of the keyboard
_MoveDownKey, which uses the ‘S’ key of the keyboard

By using the AddAlias and RemoveAlias function against these aliases, you can modify the defaults. For example,

using the following code would also allow the ‘Up Arrow’ keyboard key to be used by the

InputManager.MovementY function:

InputManager.AddAlias("_MoveUpKey", EnumInput.UP_ARROW);

View
ViewX and ViewY are properties on the InputManager that allow for a simple way to test for camera movement.

By default, camera movement is setup to use the Xbox controller’s right stick and/or the mouse.

Calling InputManager.ViewX return a value from -1 to 1. These values correspond to a ‘camera move left’ and

‘camera move right’.

Internally, it uses the following Action Alias:
_ViewHorizontal, which uses the right stick of the gamepad

Calling InputManager.ViewY return a value from -1 to 1. These values correspond to a ‘camera move down’ and

‘camera move up’.

Internally, it uses the following Action Aliases:
_ViewVertical, which uses the right stick of the gamepad
_MouseViewEnable, which uses the ‘right button’ button of the mouse

If a value for “_MouseViewEnable” exists, the button must be pressed for the mouse to actually return a value

for ViewX or ViewY. If there is no value, simply moving the mouse will change the view.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Custom Functions
In addition to testing for values on key or button press, you can also assign custom functions to run. These

functions should have the following signature:

float FunctionName()

{

}

You can name the function anything you want, but it can’t have any arguments and needs to return a float. In a

simple button, the function would return 0 for ‘false’ or 1 for ‘true’. However, you can return any value you

want.

To assign the function, simply make a call like this while registering your Action Aliases:

InputManager.AddAlias("Custom", FunctionName);

To call the function, you can simply make a normal input test like so:

float lValue = InputManager.IsPressed("Custom");

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Code Reference
Easy Input’s functionality is primarily contained in to classes: EnumInput and InputManager.

EnumInput
EnumInput is a class that really defines a set of enumerations. I prefer to use ‘const int’ values for enumerations

because they transfer easier and the compiler replaces the actual values at compile time. That means there is no

look-up at run-time.

For the most part, these enums match Unity’s KeyCode enums. However, there are some changes. The big

reason for the changes are to compress the length and to customize the Xbox controller entries.

To access values, simply use syntax like:
EnumInput.GAMEPAD_RIGHT_STICK_X

EnumInput.EnumNames
This property is a convenient dictionary that allows you to convert an enumerated value into a string. For

example, ‘EnumInput.GAMEPAD_RIGHT_STICK_X’ results in the following string value:

“GAMEPAD_RIGHT_STICK_X”.

To use, simply do the following:
string lName = EnumInput.EnumNames[EnumInput.GAMEPAD_RIGHT_STICK_X];

InputManager
This is the work-horse of Easy Input. It’s a static class so you can access it from anywhere using syntax like:
InputManager.IsJustPressed("Attack");

float DoublePressTime
Determines the length of time between presses at which a double-press is considered. The default is 0.5

seconds.

bool UseKeyboardBasic
Determines if the alpha-numeric keys of the keyboard are processed.

bool UseKeyboardKeyPad
Determines if the keypad on the keyboard is processed.

bool UseKeyboardFKeys
Determines if the function keys on a Windows keyboard are processed.

bool UseMouse
Determines if the mouse inputs are processed.

bool UseGamepad
Determines if the Xbox controller inputs are processed. If you’re disabling the Xbox controller, you don’t need to

setup Unity’s InputManager.

bool InvertViewY
Determines if the ‘ViewY’ property inverts the results that are returned from the input.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

int InputManager.KeysPressedCount
Count of keyboard input IDs that are currently pressed.

int[] InputManager.KeysPressed
Array of keyboard input IDs that are currently pressed.

void InputManager.AddAlias(string AliasName, int InputID)
Adds a new alias including the name and corresponding input.

void InputManager.AddAlias(string AliasName, int InputID, int HelperID)
Adds a new alias including the name and corresponding input. The helper input is required as well for the alias

to be active. Think ‘Alt + T’ where ‘Alt’ is the helper.

void InputManager.RemoveAlias(string AliasName)
Removes all inputs associated with the alias name.

void InputManager.RemoveAlias(string AliasName, int InputID)
Removes the specific entry that has the matching alias name and input id. All other input IDs associated with the

alias remain.

void InputManager.RemoveAlias(string AliasName, int InputID, int HelperID)
Removes the specific entry that has the matching alias name and input id. All other input IDs associated with the

alias remain.

float InputManager.MovementMagnitude
The magnitude of the movement value (from MovementX and MovementY).

float InputManager.MovementX
The ‘x’ component of the movement from the input as setup using the default action aliases. Values are from -1

to 1.

float InputManager.MovementY
The ‘y’ component of the movement from the input as setup using the default action aliases. Values are from -1

to 1.

float InputManager.ViewX
The ‘x’ component of the view movement from the input as setup using the default action aliases. Values are

from -1 to 1 (before multiplied by MouseViewSensativity).

float InputManager.ViewY
The ‘y’ component of the view movement from the input as setup using the default action aliases. Values are

from -1 to 1 (before multiplied by MouseViewSensativity).

float InputManager.MouseViewSensativity
Multiplier for the view movement to speed it up or slow it down.

float InputManager.MouseX
The ‘x’ component of the mouse’s screen position in pixels. 0 is considered the left of the screen.

float InputManager.MouseY
The ‘y’ component of the mouse’s screen position in pixels. 0 is considered the bottom of the screen.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

float InputManager.MouseXDelta
The movement of the mouse on the x-axis this frame (in pixels).

float InputManager.MouseYDelta
The movement of the mouse on the y-axis this frame (in pixels).

float InputManager.AxisX
The ‘x’ component of the mouse movement as reported by Unity. Values are from -1 to 1 and setup in Unity’s

InputManager.

float InputManager.AxisY
The ‘y’ component of the mouse movement as reported by Unity. Values are from -1 to 1 and setup in Unity’s

InputManager.

float InputManager.LeftStickX, float InputManager.RightStickX
The ‘x’ component of the Xbox controller’s sticks.

float InputManager.LeftStickY, float InputManager.RightStickY
The ‘y’ component of the Xbox controller’s sticks.

bool InputManager.IsLeftStickActive, bool InputManager.IsRightStickActive
Determines if the Xbox controller’s sticks are outside the [0,0] position.

float InputManager.LeftStickMagnitude, float InputManager.RightStickMagnitude
The magnitude of the Xbox controller’s sticks.

float InputManager.LeftTrigger, float InputManager.RightTrigger
The value of the Xbox controller’s triggers.

float InputManager.GetValue(int InputID), float InputManager.GetValue(string AliasName)
Returns the current value of the input.

bool InputManager.IsPressed(int InputID), bool InputManager.IsPressed(string AliasName)
Determines if the input is current active (ie has a value other than ‘0’). For buttons this means they are pressed.

bool InputManager.IsDoublePressed(int InputID), bool InputManager.IsDoublePressed(string AliasName)
Determines if the pressed value is a result of a double-click or double-press.

bool InputManager.IsJustPressed(int InputID), bool InputManager.IsJustPressed(string AliasName)
Determines if the input was activated this frame.

bool InputManager.IsJustReleased(int InputID), bool InputManager.IsJustReleased(string AliasName)
Determines if the input was released this frame.

float InputManager.PressedTime(int InputID), float InputManager.PressedTime(string AliasName)
The time (in total game seconds) that the input was last pressed.

float InputManager.PressedElapsedTime(int InputID), float InputManager.PressedElapsedTime(string
AliasName)
The time (in seconds) that the input has been pressed for. A value of 0 is returned if the input is not being

pressed.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

float InputManager.ReleasedTime(int InputID), float InputManager.ReleasedTime(string AliasName)
The time (in total game seconds) that the input was last released from being pressed.

float InputManager.ReleasedElapsedTime(int InputID), float InputManager.ReleasedElapsedTime(string
AliasName)
The time (in seconds) that the input has been released for. A value of 0 is returned if the input is not released.

bool IsEventsEnabled
If you also own the Event System – Dispatcher, this InputManager will push events to listeners. Enable or disable

this flag to allow that to happen. See Push Events below.

long InputManager.UpdateElapsedTicks
Number of CPU ticks the update process has taken. This is a performance diagnostic. In testing, average times

were about 0.03 milliseconds per frame.

Push Events (optional)
Event and message dispatching is a critical part of any game. Message dispatching ensures that game objects are

able to communicate in a consistent, reliable, and efficient way. In many cases, pushing input updates to

listeners is preferred to polling.

See the link at the start of the document for more information about the Event System – Dispatcher.

If you own the Event System – Dispatcher, you can use the InputManager to push messages to objects instead of

forcing them to constantly poll the input state.

To do this, ensure both assets (Easy Input and the Dispatcher) are loaded by your project and uncomment the

contents of InputManager.SendEvent.

When the InputManager detects a change in the input state, the messages will be sent.

To listen for events, a game object would simply register with the following syntax:

MessageDispatcher.AddListener(EnumInput. MOUSE_LEFT_BUTTON.ToString(),

EnumInputMessageType.INPUT_JUST_PRESSED, MyMouseClickHandlerFunction);

Note that the raising of the event does NOT mean the event happened on the specific object (ie a mouse click on

that object). Only that a mouse click occurred.

See the online documentation for additional details.

http://www.ootii.com/UnityDispatcher.cshtml

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Integrating with Motion Controller or Adventure Camera & Rig
If you’ve purchased the Motion Controller or Adventure Camera & Rig (or both)… thank you! I really appreciate

the support. J

Easy Input works with both of these assets with one additional step:

Drag the GameObject you added the Easy Input Source to, to the “Input Source” field.

 ASSET VERSION 1.72

support@ootii.com ootii |www.ootii.com

Support
If you have any comments, questions, or issues, please don’t hesitate to email me at support@ootii.com. I’ll help

any way I can.

Thanks!

Tim

mailto:support@ootii.com

